On model selection consistency of M-estimators with geometrically decomposable penalties
نویسندگان
چکیده
Penalized M-estimators are used in diverse areas of science and engineering to fit high-dimensional models with some low-dimensional structure. Often, the penalties are geometrically decomposable, i.e. can be expressed as a sum of support functions over convex sets. We generalize the notion of irrepresentable to geometrically decomposable penalties and develop a general framework for establishing consistency and model selection consistency of M-estimators with such penalties. We then use this framework to derive results for some special cases of interest in bioinformatics and statistical learning.
منابع مشابه
On model selection consistency of regularized M-estimators
Penalized M-estimators are used in many areas of science and engineering to fit models with some low-dimensional structure in high-dimensional settings. In many problems arising in machine learning, signal processing, and high-dimensional statistics, the penalties are geometrically decomposable, i.e. can be expressed as a sum of support functions. We generalize the notion of irrepresentability ...
متن کاملModel Selection in Gaussian Regression for High-dimensional Data
We consider model selection in Gaussian regression, where the number of predictors might be even larger than the number of observations. The proposed procedure is based on penalized least square criteria with a complexity penalty on a model size. We discuss asymptotic properties of the resulting estimators corresponding to linear and so-called 2k ln(p/k)-type nonlinear penalties for nearly-orth...
متن کاملBayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution
This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...
متن کاملStructure Learning with Nonparametric Decomposable Models
We present a novel approach to structure learning for graphical models. By using nonparametric estimates to model clique densities in decomposable models, both discrete and continuous distributions can be handled in a unified framework. Also, consistency of the underlying probabilistic model is guaranteed. Model selection is based on predictive assessment, with efficient algorithms that allow f...
متن کاملA unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers
High-dimensional statistical inference deals with models in which the the number of parameters p is comparable to or larger than the sample size n. Since it is usually impossible to obtain consistent procedures unless p/n → 0, a line of recent work has studied models with various types of low-dimensional structure, including sparse vectors, sparse and structured matrices, low-rank matrices, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013